skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Falasca, Fabrizio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radiative forcing drives warming in the Earth system, leading to changes in sea surface temperatures (SSTs) and associated radiative feedbacks. The link between changes in the top-of-the-atmosphere (TOA) net radiative flux and SST patterns, known as the “pattern effect”, is typically diagnosed by studying the response of atmosphere-only models to SST perturbations. In this work, we diagnose the pattern effect through response theory, by performing idealized warming perturbation experiments from unperturbed data alone. First, by studying the response at short time scales, where the response is dominated by atmospheric variability, we recover results that agree with the literature. Second, by extending the framework to longer time scales, we capture coupled interactions between the slow ocean component and the atmosphere, yielding a novel “sensitivity map” quantifying the response of the net radiative flux to SST perturbations in the coupled system. Here, feedbacks are captured by a spatiotemporal response operator, rather than time-independent maps as in traditional studies. Both formulations skillfully reconstruct changes in externally forced simulations and provide practical strategies for climate studies. The key distinction lies in their perspectives on climate feedbacks. The first formulation, closely aligned with prediction tasks, follows the traditional view in which slow variables, such as SSTs, exert a one-way influence on fast variables. The second formulation broadens this perspective by incorporating spatiotemporal interactions across state variables. This alternative approach explores how localized SST perturbations can alter the coupled dynamics, leading to temperature changes in remote areas and further impacting the radiative fluxes at later times. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026